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SUMMARY
A method is developed for the reconstruction of a non-uniform distribution of scattering
properties in the upper layers of the Earth using data on broadening of an incoherent
body-wave group or pulse along a number of rays. The theoretical basis for this recon-
struction is a linear integral formula after Bocharov (1985, 1988), which is employed to
design a linear inversion procedure. The inversion is performed in terms of a single scalar
parameter of effective turbidity. This parameter presents an adequate generalization of
the common turbidity parameter used in the isotropic scattering case; it describes,
simultaneously, scattering attenuation, pulse broadening and backscattering or coda
formation. As a preliminary step, necessary conditions of applicability of the transport
equation approach for the analysis of regional high-frequency seismic waves are verified.
A new compact derivation of Bocharov’s formula is then presented. A linear least-
squares inversion procedure for recovering a layered turbidity structure is proposed
and tested on synthetic data of onset-to-peak delays of incoherent body-wave pulses.
A few practical aspects of the application of the general approach to seismological data
are analysed, including the correctness of the low-angle approximation, the use of peak
delay observations instead of pulse centroid, the effects of a realistic spatial spectrum
of inhomogeneity field, the potential bias produced by intrinsic loss, and the distortions
produced by a non-spherical (double dipole) source radiation pattern. The latter point
is considered as critically important, as one can expect significant data contamination
by nodal arrivals. An efficient robust estimation procedure is designed and tested that
is capable of suppressing distortions from nodal and near-nodal data.

Key words: inhomogeneous media, inverse problem, inversion, scattering, seismic
waves.

either ‘direct’ (more accurately speaking, forward-scattered) waves,
INTRODUCTION

or backscattered waves (coda) are analysed. For ‘direct’ waves,
The spatial distribution of random-scattering properties of the scattering manifests itself most obviously as pulse broadening;

Earth is a little-studied field of seismology. There is a general that is, as an increase in the duration of the incoherent

understanding of a fast decay of scattering capability with ‘direct’ wave group with distance. For coda, scattering manifests

depth, based on the analysis of teleseismic P waves (e.g. Aki itself merely in its existence, and the amplitude of the coda

1973; Flatte & Wu 1988) and regional S waves including codas immediately reflects the strength of scattering. To determine

(Rautian et al. 1981). Gusev (1995) proposed an approximately the scattering parameters in the first case, one can use the rate

power-law decay of turbidity or scattering coefficient with of pulse-width increase with distance (Gusev & Lemzikov

depth, but this result was obtained in a somewhat indirect 1983, 1985; Sato 1989); in the second case, one can use the

way, from the interpretation of coda shapes and attenuation. relative coda amplitude normalized to the amplitude of the

Generally speaking, to determine the spatial distribution of direct wave (Aki & Chouet 1975; Aki 1980). Using a model of

turbidity from seismological data the entire wave envelope can a uniformly scattering medium to analyse the Kamchatka

data, Gusev & Lemzikov (1983, 1985), and then later morebe used, from an arrival up to late coda; in practice, however,
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accurately Abubakirov & Gusev (1990), were able to demon- equation

strate an acceptable agreement between the observational
A2 (z)=A2

0
exp(−gz)=A2

0
exp(−z/l)=A2

0
exp (−2p fz/cQsc ) ,estimates of turbidity determined by these two approaches.

When studying a non-uniformly scattering medium, the (1)
pulse broadening of a ‘direct’ body wave is the most direct

where A0=A(0), c is the wave velocity, f is the wave frequency,
approach, since the broadening effect, being produced by

and Qsc is the quality factor related to scattering loss. In the
forward scattering, reflects the properties of a tubular volume

study of non-stationary problems, such as pulses, one should
of the medium in the vicinity of the ray. This approach may

imagine a finite frequency band, of width Df , around f .
permit the reconstruction of a spatial turbidity distribution

The inverse of Df is the characteristic time t
D
. When Df is

based on the data on broadening for a multitude of rays. A
sufficiently wide, t

D
is small and often can be neglected in

similar problem is known in radioastronomy: the analysis of the
comparison with the other temporal parameters of the problem;

broadening of radio pulses from pulsars can in principle yield
then (1) still holds. In practice, we are interested in the

a 3-D structure of the scattering plasma in the intergalactic
application of our results to the interpretation of high-

medium (Bocharov 1987, 1990).
frequency seismic body waves, so f is in the range 0.5–30 Hz.

It would be very convenient for the application of such
All discussion will be developed for the acoustic case, neglecting

an approach if the scattering properties of the Earth could
P� S or S�P conversion.

be specified by a single parameter describing both forward
In terms of inhomogeneity structure of the medium, the case

scattering manifested in pulse broadening and backscattering
of a spherical indicatrix corresponds to a very small scatterer/

manifested in coda formation. Fortunately, such a parameter,
heterogeneity size a%1/k, or ka%1, or a%l (k=2p f /c,

namely effective turbidity ge , can indeed be introduced. The
l=c/ f is the wavelength). The a parameter in this inequality

theoretical background to the method that permits one to
defines the correlation distance of the random heterogeneity

relate the value of the pulse width to the values of effective
field; the particular form of correlation function is irrelevant

turbidity along a ray was developed by Bocharov (1985, 1987,
in this case. This assumption of small a is unlikely to hold for

1988). His integral formula is linear with respect to the
the Earth, where we can expect a wide spectrum of hetero-

unknown profile of ge along the ray; therefore, the arising
geneity sizes. The inadequacy of the isotropic scattering model

tomographic problem is also linear.
is manifested most clearly by its inability to predict any rate

This general approach will be developed in some detail
of pulse broadening with distance: according to this model,

below. Attention is given to many critical questions that should
the direct pulse must be delta-like at any distance where it is

be addressed when one tries to apply the theoretical results,
above the noise. This means that the observed duration of the

obtained with assumptions that are not quite realistic, to the
body-wave group must be short (determined by the source

interpretation of real seismological data. In the companion
process duration of an event) and independent of distance, in

paper (Gusev & Abubakirov 1999), the new technique is
contradiction to observations. Therefore, one must reject the

applied to the inversion of data on the pulse broadening of
isotropic scattering model and pass to more complicated

body waves from local Kamchatka earthquakes as expressed
ones, with non-spherical indicatrix; that is, with non-isotropic

in onset-to-peak delay time.
scattering.

In a preliminary study, Gusev & Abubakirov (1996a) made
How should the parameter g be generalized for these more

the first successful attempt to perform the inversion of vertical
realistic models? Let us first consider the case where the

effective turbidity structure from pulse delays. Compared to opposite inequality, ka&1 or a&l, is true. This corresponds
the method described there, the present work has some radical to large-scale inhomogeneities, and the scattering indicatrix
improvements, in particular, realistic rays instead of straight is a narrow lobe along the wave vector of an incident ray
ones are used, and residual-dependent data weighting is applied. (prominent ‘forward’ scattering) with an angular width of the

order of 1/ka. A well-known example of an inhomogenity field

is one with the Gaussian autocovariance function (referred to
ON EFFECTIVE TURBIDITY as the Gaussian-ACF case):

Before formulating the inverse problem for effective turbidity, 
e(x)e(x+d)�=
e2� exp(−d2/a2) , (2)
one must be able to solve the forward problem; that is, to

where e(x)=(c (x)−
c�)/
c� is the fractional wave-velocitydetermine the expected parameters of the pulse from given
perturbation and 
e2� is its mean square (
 � representsscattering properties of the medium. A problem arises: in terms
ensemble average here and below). For this field, in the caseof which parameter of the medium should one pose the forward
ka&1, the mean square angle of scattering isand inverse problems? Analyses of scattering based on coda

waves have frequently been carried out assuming an iso- h2
0
=2/k2a2 . (3)

tropically scattering medium; that is, the radiation pattern/
In the case of forward scattering, the broadening of andirectivity of scattered energy (known under the compact and

incoherent wave pulse with distance is the characteristicconvenient name of ‘scattering indicatrix’ in optics) is assumed
property of the problem. To discuss it, we introduce a simpleto be spherically symmetric. The single parameter of such a
integral duration parameter of the mean delay (centroid):model is the value of the turbidity (scattering coefficient) g, or

of the mean free path l=1/g.

T �=P2

t
d

(t−td)E(t) dtNP2

t
d

E(t) dt , (4)These parameters are defined through the loss of energy

to scattering for a plane monochromatic wave. For a wave

propagating along the z-axis of a Cartesian coordinate system, where td is the direct wave arrival time and E(t) is the mean
square amplitude, or instantaneous power of signal within thethe amplitude A(z) of a direct wave decays according to the
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band D f . In the simplest case of low-angle scattering, point g equal to

source and a uniformly scattering Gaussian-ACF medium,
ge=gn(1−
cos h� ) , (8)

Williamson (1972) found that
where gn is the already introduced common, non-isotropic
scattering coefficient or turbidity, and 
cos h� is the average
T�=

D

12c
r2 , (5)

cosine of the scattering angle:

where r is the distance travelled and D is ‘the mean square

cos h�=P

4p
cos h m(V) dV , (9)angular dispersion of the ray per unit distance’ parameter

employed by Williamson. The ‘ray diffusion coefficient’, employed

in a similar context by Chernov (1975), is DCh=D/4. Both where dV is solid angle element, and m(V) is the indicatrix
parameters describe the medium’s capability of scattering, and function mentioned above, scaled so as to produce the integral
neither is quite suited to our aims. Thus we define here the of the value unity over the entire sphere (and therefore to
‘effective turbidity’ parameter as ge=2DCh=D/2, so that represent the probability density for a scattered ray direction).

Note that for a narrow indicatrix (ka&1), 1−
cos h�#

h2�/2=h2

0
/2, and
T�=

ge
6c

r2 . (6)

ge= (h2
0
/2)gn . (10)

Therefore, the value of 
T � increases as the distance squared,
[For the Gaussian-ACF case (see eq. 2) this gives ge=gn/k2a2.]and the intercept of this trend may be used for the practical
Now imagine two model Gaussian-ACF media with differentdetermination of ge . but narrow indicatrices, such that the values of a and gn areIt should be noted in connection with this and further
different, but the values of ge are equal. Then (1) the trends ofsimilar results related to multiple low-angle scattering, that the
mean pulse delay with distance (and even pulse shapes for the‘low-angle’ condition is set with respect to the entire cumulative
multiple scattering case) will coincide in the two media; anddeflection angle, and not to the scattering angle in a single act
(2) the same source will produce the same level of ( late) codaof scattering. However the quadratic trend (6) holds true well
in both media. A difference between the full envelopes for theoutside the strict limits of the ‘low-angle’ condition: numerical
cases with different gn/ge ratios will still be present, but it willmodelling by Gusev & Abubakirov (1996b) showed it to be
be manifested only in ‘early’ codas and usually is not easy toapproximately true up to sufficiently large distances, when the
observe [see results of the numerical modelling in (Gusev &cumulative angle is of the order of 1 radian. Also, the approxi-
Abubakirov 1996b)]. This explains why we consider ge as themately quadratic mode of the trend is not limited to the case
main practical parameter for the specification of a scatteringof Gaussian ACF, and applies to any narrow indicatrix with
medium. Note that by using the two types of observationsfinite second moment (h2

0
<2 ).

(pulse delay and coda level ), one can try to estimate thisThe notion of effective turbidity [‘equivalent isotropic
parameter via two different, independent procedures.turbidity’ of Gusev & Lemzikov (1983, 1985)] is of key

Now let us consider more general and more realisticimportance. It should not be confused with the common, ‘true’,
situations when either ka is comparable to unity, or thenon-isotropic turbidity gn , defined by eq. (1) if one replaces g
Earth medium cannot be characterized by a single charac-by gn . To introduce a pair of parameters like gn and ge is not
teristic heterogeneity size a. An example is a self-similar fractalnovel at all: they are in fact identical to two concepts very well
inhomogeneity field. The limit of applicability of the ge conceptknown in neutron transport theory: those, respectively, of the
in such a case is yet to be demonstrated rigorously, but is‘true’ and ‘transport’ cross-sections of a unit volume of the
expected to be fairly wide. To produce clear pulse broadening,medium. We will also use effective and ‘true’ mean free paths
it is sufficient that the real indicatrix be moderately elongated,le=1/ge and ln=1/gn . and this assumption seems to be in qualitative agreement withAs was noted by Abubakirov & Gusev (1990), the mean
the observed coda shapes and observed broadening phenomenacosine of cumulative angular deflection h of a ray decreases
(see discussion in Gusev & Abubakirov 1996b). The com-with distance r as
parison of modelled and observed records performed in that


cos h�=exp(−2ger)=exp(−Dr) . (7)
study suggests that the characteristic width of a real indicatrix
is about 30°–40°.Thus, after propagating a distance of the order of r0=le , the

rays suffer significant angular deflection (of the order of one Despite its key role in the theory, the true turbidity para-

meter gn is seemingly much more difficult to determine fromto two radians). Therefore, r0= le is the critical distance. Up
to r0 , the wave energy propagates within some gradually observations than ge . This could, in fact, be expected: gn

accounts for scattering into all angles, including very smallwidening tube or, rather, ‘horn’, along the initial ray. At
distances of the order of r0 and larger, the low-angle approxi- ones, in which case it is practically impossible to distinguish

between direct and scattered wave energy. For example, ifmation breaks down. As the rays continue to propagate, they

soon ‘forget’ their initial direction and begin to wander almost there is a hundred-fold increase in the amount of scattering
into all angles below 10−4 rad, the value of gn will be changedisotropically [see Gusev & Abubakirov (1996b) for examples

of both stages]. In the asymptotic case of large propagation radically, but ge will be modified only slightly, because the

contribution of small angles to the integral (9) is smalltime t& le/c, the behaviour of rays is essentially a sort of
random walk. In this case, the theory (Ishimaru 1978) predicts (as dV=sin h dh dw, and sin h is small at small h).

One of the best-known manifestations of scattering is scatteringthe space–time distribution of wave energy according to the

diffusion law, similar to the case of isotropic scattering. The attenuation. Let us discuss how the effective turbidity ge
parameter is related to this phenomenon. We note immediatelyasymptotic energy density distribution for this case coincides

with that for the case of isotropic scattering, with the value of that if scattering losses are defined in the ‘seismological’
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manner, using the integral over the whole observed pulse to texts such as Ishimaru (1978) or Rytov et al. (1978) for details

on this classic equation, initially introduced by Boltzmann forcalculate energy and to judge its decay, then any small
deflections of the ray that do not cause a decrease in this diffusion of particles. This equation is referred to in optics of

stellar or planetary atmosphere as the ‘radiation transferenergy are irrelevant to such ‘seismological’ loss. In such a

case, the example described in the previous paragraph shows equation’, and is known in neutron physics as the ‘neutron
transport equation’. The ETE is an effective approach if onenot only that the value of true turbidity gn is difficult to

measure, it also means that this parameter is irrelevant to wishes to substitute the general wave equation treatise of a

wave propagation problem by the study of wave energylosses and therefore is useless for specifying attenuation. In the
isotropic scattering case, however, the value of g=ge=gn propagation (that is, one neglects phase information, assuming

the waves to be incoherent, the phases random and the energydefines scattering loss in quite a consistent way. Recalling that

both 1/g and 1/ge are the distances at which the ray forgets its additive). It should be noted that most problems solved with
ETE in optics, neutron theory and radiophysics are stationary,initial direction and is deflected by an angle of the order of

1–2 rad, it becomes clear that the ge parameter is the natural hence the use of ETE in seismology, where non-stationarity is

a characteristic property of the problem, leads to a number ofcandidate for describing scattering losses.
Note that the implicit, practical seismological definition of problems unexplored within traditional applications of ETE.

Rytov et al. (1978) list the following necessary conditionsloss is not strict: it does not specify accurately either the time

interval for integrating pulse energy or the critical angle such that are to be satisfied for ETE to be applicable:
that deflections in excess of it are considered ‘loss’. One

k&2gn or l% le/p or Qsc,n&0.5 , (11a)
seemingly reasonable outcome is to consider as lost all energy

k2a2 
e2�%1 , (11b)deflected by more than 90°. Unfortunately, this definition
disagrees with the reference isotropic scattering case: in this a%C1 , (11c)
case, when the distance is equal to l=1/g, loss is just 1/e by

a%C2 , (11d)
definition. However, the lost energy is distributed evenly over
frontal and back hemispheres, and hence only half of it goes where Qsc,n is defined by eq. (1) when g is replaced by gn , and

C1 and C2 are the characteristic scales describing the spatialto the back hemisphere, in contradiction with the possible
generalized definition given above. The problem is not of key variation of wavefield intensity along and across the ray. To

check inequalities (11a) and (11b) we will assume the ACF ofimportance because it relates to the coefficient of the order

unity. Despite the fact that some details of this sort are not inhomogeneities to be Gaussian. This is permissible for rough
estimates because, despite the presence of many sizes ofyet settled, one can quite safely consider ge as the parameter

approximately representing scattering loss. [The only problem inhomogeneities in the medium, for the neighbourhood of any

particular frequency f the most important contribution is themay arise at small dimensionless (‘optical’) distances L e=ger
where, in the case of low-angle scattering, seismological loss is scattering due to inhomogeneities of a size close to the wave-

length (Wu & Aki 1985). Let h0=0.5 rad in agreement withnot proportional to L but represents an infinitely small value

of the order higher that L , which is, in practice, equal to zero. observations (Gusev & Abubakirov 1987), then ka#3, or a#0.5l.
At h0=0.5, ge/gn#0.5. With this value and ge#0.01 km−1In seismological applications, however, optical distances are

usually comparable to unity, and also the assumption of low- (Sato 1978), the inequality (11a), at c=5 km s−1 , gives

f &0.013 Hz. This condition holds for scattered body wavesangle scattering is far from being correct, hence this problem
is not very important.] at regional distances.

As for the inequality (11b), at ka=3, even with 
e2� set toTo sum up, the single ge parameter defines three main

properties of real, non-isotropically scattered high-frequency its practical upper bound of (10 per cent)2, it gives 0.09%1
which is fully acceptable. In (11c), C1 is of the order le , andseismic waves: pulse broadening, relative coda level and

‘seismological’ scattering loss. It is natural to formulate the because of a#0.5l, (11c) holds simultaneously with (11a),

which has been already checked. Finally, in (11d) C2 is of theinversion problem in terms of this parameter.
order r (for a radiator of double-dipole type). Therefore the
condition (11d) can be violated near the source at distances r

RADIATION TRANSFER/ENERGY
of the order of a, that is of l. This distance is too small for the

TRANSPORT THEORY AND STOCHASTIC
usual conditions of regional observations. Hence, the necessary

RAY PATHS: THEORETICAL
conditions are satisfied and the assumption of applicability of

BACKGROUND FOR THE FORWARD
ETE for the analysis of regional body waves can be considered

PROBLEM
reasonable.

We have already noted that ETE describes both theIn seismology, a stochastic representation of wave propagation
phenomena, in particular the description of wavefields by propagation of random waves and the propagation of particles

in a medium with random scatterers (Ishimaru 1978); thus,their energy instead of amplitude, is usually done on a

purely empirical basis, despite several decades of history. Such in theory, the choice of description of wave propagation
phenomena, through intensity of radiation or through thea representation has, however, a long tradition in optics,

acoustics and radiophysics, and there are well-defined criteria density or flux of particles, is a matter of convenience only.

The description through particles is the basis of the numericalfor its applicability. Before any data analysis in terms of
random waves and random media is performed, it is a good Monte Carlo method (for example Gusev & Abubakirov

1987, 1996b), but it can be successfully applied for analyticalidea to check whether these criteria are satisfied.

Thus, we shall try to check whether the propagation of high- calculations as well (Williamson 1972). An important and non-
trivial fact, which should be emphasized, is that the descriptionfrequency seismic waves through the complex Earth medium

can be treated using the energy transport equation (ETE). See of the propagation of random waves by a flux of particles is

© 1999 RAS, GJI 136, 295–308



T urbidity profile from pulse broadening—I. T echnique 299

a formally well-founded approach and not some rough esti- its propagation through a non-uniformly scattering medium,

the broadening is described by the integral (12), while scatteringmation scheme. This fact is related to the strong analogy
between wave and particle (‘photon’ or ‘phonon’) propagation, attenuation is related to another integral, the effective optical

length of the ray:discussed formally in, for example Williamson (1975), Uscinsky

(1977), Dashen (1979), Bocharov (1985, 1990). For the low-
angle case (or within the parabolic approximation), this analogy L e=P S

0
ge (u) du . (13)

has been demonstrated formally to be an equivalence.

Therefore, the parameters of the scattered body-wave pulse
This integral also predicts cumulative ray deflection. The L emay be determined as parameters of the distribution function
parameter replaces the gz combination in (1) and the gerof the moments of arrival of delta-like pulses/particles along
combination in (7). In the case of isotropic scattering, L e is

different randomly shaped rays; each of this multitude of rays
identical to the mean multiplicity of scattering.

is formed by one single realization of a random medium. If a
Bocharov’s formula is linear, but its predictions are never-

ray/particle trajectory can be considered as a smooth random
theless sometimes far from evident. In order to acquire some

curve, then the corresponding approach is named ‘the ray
understanding of the general properties of pulse broadening

diffusion technique’ (Chernov 1975). However, the assumption
in a non-uniformly scattering medium let us investigate some

of smoothness is not critical. Rays/particle trajectories can be
simple idealized case. We choose the particular case of a

assumed piecewise linear instead of curved, as was proposed
receiver located on top of a scattering layer of thickness H

by Williamson (1972, 1975) under the special name of the
and effective turbidity ge,l that overlays a transparent half-

‘stochastic ray-path method’. In a difference from the ray
space, and a series of model sources located along the vertical

diffusion approach, Williamson (1975) discusses only the case
ray directed downwards from the receiver. The medium velocity

of low-angle scattering. However, the correspondence between
is set constant, equal to 4 km s−1 . Fig. 1 illustrates the appli-

a full wave description, ETE and a description through an
cation of Bocharov’s formula to this structure, in common and

ensemble of particles or piecewise-linear rays is of general
log–log scales. For ray hypocentral distances r<H, the curves

validity and is not limited to small angles. The case of small
are based on eq. (6), and for r>H on the theoretical formula

angles is nevertheless very important, because in this case
which is implied from (12) for this case:

analytical results can be obtained, whereas in the general case
numerical modelling should be used. Below we shall combine


T �=
ge,lH2

cr A r

2
−

H

3 B . (14)these two approaches.

The critical value of 
T �, for a source situated just on theBOCHAROV’S FORMULA AND AN
lower boundary of the layer, is denoted by a symbol on eachEXAMPLE OF ITS APPLICATION
graph of Fig. 1.

Andrei Bocharov of Moscow derived a formula for the mean The first row shows the results for a fixed layer thickness
delay 
T� of a pulse radiated by an instant point source and of 50 km and varying scattering in the layer: ge,l=0.0071,
propagating through a non-uniformly scattering medium, 0.02 and 0.071 km−1 . At a fixed distance, 
T� is proportional to
assuming low-angle scattering. He developed the stochastic ge,l , as expected. What is unexpected is the remarkable increase
ray-path approach of Williamson (1972), who had already of 
T� during propagation through the non-scattering medium
studied the cases of constant-ge medium and of a scattering (asymptotically, threefold at large r), as immediately follows from
layer. The final formula was published in Bocharov (1988), eq. (14). This effect looks counterintuitive. However, the result is
but its systematic derivation, rather lengthy, was published accurate, and the value of the asymptotic limit has already been
only in preprint form (Bocharov 1985, 1987). In the Appendix obtained by Williamson (1972). Williamson and Bocharov use
we present a short new proof for Bocharov’s formula. The a common assumption: that the initial problem with random
final result for mean pulse delay 
T� along a ray of length S rays connecting two points can be replaced by the assumedly
can be written as equivalent problem of rays starting at a fixed direction and

arriving at a spherical surface. We checked the possibility that
c
T �=F=

1

S P S
0

ge(u)(S−u)u du , (12) this assumption could fail in the case studied. Fortunately, for
the asymptotic case of a very thin layer, one can perform the
whole derivation without this assumption, and arrive at the samewhere the integral can be evaluated along either a perturbed

or an unperturbed/mean ray (the difference is negligible within result of three-fold difference.
The actual origin of the problem is when the correct idea thatthe approximation used). It contains one and only one medium

parameter of effective turbidity, and is valid for low-angle a transparent medium does not affect energy loss [represented
by the integral (13)] is applied (unlawfully) to the integral (12)scattering of arbitrary mean multiplicity. An additional require-

ment is that ge must change negligibly over a distance of a different structure. The quadratic increase of mean delay

with distance, as compared to the linear increase of loss, shouldcomparable to the value of the side shift of the ray; that is,
within ‘the mean ray tube’ sounded by random rays, which have been taken as a warning signal. The real cause of the

problem is easy to find: the ‘horn’ formed by randomly perturbedseems rather natural. The ‘weighting function’ factor under the

integral to modify ge(u) is a symmetric inverted parabola giving rays in the layer continues to widen as the receiver moves
deeper into the transparent half-space; thus the average sidesmall weight to contributions from the ends of the ray, and a

large weight to its middle part. For constant ge , (12) reproduces deflection of the ray increases, and the mean delay with it.

Generally, all this means that, whereas the contributions ofWilliamson’s result (6). It should be noted that the integral
representation for F also holds for the case of variable velocity. segments of the ray into the 
T� value are indeed additive

because of the linear structure of the integral (12), suchTherefore, for the two changes that a pulse undergoes during
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Figure 1. The behaviour of mean peak delay observed by a receiver on top of a layer of constant effective turbidity of thickness H underlain by

a transparent half-space, from a series of sources distributed along a down-going ray. Right column: natural scale; left column: log–log scale.

Top row: three values of effective mean free path/turbidity and a constant layer thickness of 50 km; middle row: three values of the layer thickness

and a constant effective turbidity of 1/50 km; bottom row: three values of layer thickness, and identical values of optical thickness for these

layers—L e=H/le=1.00.

contributions for the integral (13) cannot be calculated along
Curved mean rays

each segment independently and then added: this simple kind
of additivity does not hold. It should be noted that this lack of To apply the derived formula in seismology, one must move

from constant to variable mean velocity, and thus from straightsimple additivity has an important outcome for the analysis
of ge values obtained from an inversion: if one compares the unperturbed rays to curved ones. This does not seem to

produce serious problems: the initial geometry with a straightge estimates for a thick layer with similar estimates for its

sublayers, the sum of the latter need not be near the former unperturbed ray can be transformed into one with a smoothly
curved ray producing errors that are small in the first approxi-(as might be expected for, for example, ge values estimated

from amplitude decay). mation. The formula for F remains valid, but now we cannot

simply set 
T�=F/c. However, as variations of velocity areThe second row illustrates how the values of 
T � depend
on distance: they increase as the square of distance travelled moderate in seismological applications, to obtain a reasonable

approximation we can merely substitute c by the ray-averagedwithin the layer, and farther saturate as discussed above. The

third row shows the effect of layers of a fixed effective optical velocity.
length L e=ge,lH, but of different H. Here, again, the difference
in nature between integrals (12) and (13) is clearly manifested. Multi-ray propagation
The L e parameter does not immediately determine pulse width:

The general approach of the present paper is complementaryat constant L e , 
T � grows linearly with H. This is an important
to the common representation of the Earth’s inhomogeneityfact: whereas both 
T � and L e increase with distance, the
by flat layers. Therefore, in some cases, the traditionalprecise modes of increase are different. In the primitive case of
explanation of pulse shapes based on multi-ray propagationuniform effective turbidity, 
T� increases as distance squared,
within a layered average structure is a competitor to thewhereas L e grows only linearly. As these two manifestations
present approach. There are cases, however, when the resultsof scattering are not proportional to one another, integral
of an analysis in terms of a random structure that ignores theloss cannot be judged from integral pulse delay, and formal
deterministic ray propagation in a layered structure may beinversion is needed to relate them.
completely misleading. An example case among regional obser-
vations is when, within the window chosen for the analysis,

PRACTICAL ASPECTS OF THE
we observe phases such as P

n
followed by P

g
, or S

n
followed

APPLICATION OF BOCHAROV’S FORMULA
by L

g
. The arrival of a fast head wave gives an incorrect

TO THE DATA ANALYSIS
reference to judge the value of the delay of wave energy that

propagated, mainly, along lower-velocity paths. In order toBocharov’s formula (12) has been derived for an ideal case;
when it is applied to the analysis of real seismological data avoid this kind of difficulty, in the practical inversion below

we will use only uprising rays.several problems are encountered, to be discussed below.
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of the correction coefficient at present. In such a situation we
Low-angle scattering and real scattering angles

prefer to use the relationship (15) for the inversion, and thus
to obtain apparent estimates valid for the reference, Gaussian-A small degree of deviation of rays from their unperturbed

position is the formal condition of the applicability of the ACF medium model. In data interpretation, however, we will

introduce the above-mentioned correction coefficient, its valuepresent theory. When studying pulse broadening one can verify
this condition directly. The pulse width should simply be set to 2.0.

One can ask whether our approach is greatly handicappedmuch smaller than the traveltime td , and this can be checked

immediately with real data. It should be realized, however, by using a seemingly ‘primitive’ tm value instead of a ‘strict’
mean delay (as the direct estimate of the parameter 
T� ). Itthat in this case, as well as in many other similar cases, the

real domain of applicability of the asymptotic theory is much should be emphasized that at least in the case of regional

observations, both the individual measured tm value and thewider. As can be seen from the results of numerical modelling
(Gusev & Abubakirov 1996b), even values of optical distance mean peak delay 
tm� in general are the types of parameters

that have important advantages as compared to 
T � whencomparable to unity are quite acceptable.

specifying broadening of an observed pulse. The reason is that
observed (and even numerically modelled) estimates of 
T �

Relation between 
T � and measured parameters of the tend to become unstable, because they include integration (4),

performed in practice along rather slowly decaying codapulse
multiplied by time. Any erratic spikes in the coda can and do

To determine the observed value of the 
T� parameter one
distort the estimate of 
T � radically. In contrast, the tm values

could analyse the digital records directly. We are interested
are robust, being insensitive to this kind of bias. Their larger

here in a technique that is applicable both to analogue and
scatter can be compensated by an increase in data volume.

digital data. In this case, it is convenient to measure the delay
time between the arrival and the peak of a body-wave group,

denoted tm . To relate this parameter to 
T �, assume that the
Possible bias caused by intrinsic loss

average value of tm, or 
tm�, coincides with the delay of the
maximum of the theoretical mean pulse shape function. For Intrinsic loss shortens the pulse, thus reducing the pulse

broadening caused by scattering (Sato 1989). For the Gaussian-the case of a uniformly scattering medium, large multiplicity,
and low-angle scattering, the relationship between 
T � and ACF medium with Williamson’s pulse shape, this effect can be

easily estimated, and its magnitude, for this particular case, is
tm� can be determined using Williamson’s (1972) formula for

the pulse shape function: the result (Gusev & Abubakirov not large for typical observations. For more realistic media
with power-law inhomogeneity spectra, the decrease of the1996b) is
peak delay is considerably smaller than for Gaussian-ACF


tm�/
T �=6/10.8=0.55 . (15) media of similar effective turbidity. (The cause is that for
shorter pulses, the relative pulse shortening produced by

In practice, however, one cannot lean upon the assumption
intrinsic loss is smaller.) Also, for such analysis one should use

of Gaussian-ACF medium, nor that of large multiplicity, nor
the correct values of intrinsic Q (Qi ): neither the Qi estimates

that of low-angle scattering. We can use, however, the results
based on the interpretation of coda in assumedly uniformly

of numerical modelling, for example, those after Gusev &
scattering media, nor the Q values recovered from body-wave

Abubakirov (1996b). Comparing these results to observed
attenuation data will do. Both these kinds of estimates rep-

body-wave envelopes, these authors have found that the most
resent the summary effect of scattering and intrinsic losses,

probable model of a random scattering inhomogeneity field
and therefore can serve as no more than upper bounds for the

can be specified by the power-law k-spectrum, with the value
latter; in fact they may significantly overestimate it (Dainty

of the exponent c equal to 3–4. In this case, the deviation of
1981; Gusev & Abubakirov 1996b).

pulse shapes from Williamson’s (1972) formula can be signifi-
cant. At a fixed value of the mean delay, the particular manner
of the shape difference is a shift of the position of the peak

On the constant term in observed t
m

values
for the power-law case to earlier times (to the onset). As a
result, tm decreases by a factor of 1.7 for c=4 and by a factor It is common to view a seismic signal as a result of con-

secutively acting linear operators, each describing one of theof 3 for c=3, compared to the low-angle Gaussian-ACF case

of Williamson (1972). following processes or effects: earthquake source; propagation
path (with excluded near-station effects); near-station structure;With practical inversion in view, this shift of the peak can

be approximately accounted for by introducing a correction and instrument filter. This representation implies that each of
these (physical ) operators makes an additive non-negativecoefficient. The most probable value of c is near to 3.7 (Sato

1990; Gusev & Abubakirov 1996b); the corresponding value contribution to the first power moment (centroid, 
T �) of

the pulse (as the first moment of convolution is a sum ofof the correction coefficient is about 2.0, and this value may
be used for data analysis. There is an additional complication those for operands). Approximately, the contributions to other

measures of pulse broadening, such as tm , will also be additive.as well, related to the fact that the ratio 
tm�/
T� depends on

the actual degree of non-uniformity of scattering properties In an analysis of the effective turbidity of a medium we are
interested solely in the path effect, so that source, near-stationalong the ray. Judging by the limiting case of a thin random

phase screen in a non-scattering medium (Williamson 1972), and instrument terms should be treated as biasing factors. The

instrument term can be estimated from the system responsenon-uniformity may cause some additional decrease of tm with
respect to 
T�. (In the present study we neglect effects of this (and then subtracted, as was done in Gusev & Lemzikov

1983, 1985). The source term can be roughly estimated basedkind.) For all these reasons, we cannot fix an accurate value
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on corner frequency, or on visual signal period. However, the switching is sufficiently abrupt so that small deviations are

near-station term presents a difficult problem. Its effect is often hardly suppressed, whereas large deviations are suppressed
hard to notice when studying seismic station data because strongly. It should be noted that in this case the value of the
the art of choosing a good station location is, to a large average weight over all data can be viewed as the fraction
degree, just the art of finding a spot with negligible near- of non-suppressed data. On the other hand, switching is
station resonances. With field data, near-station effects on sufficiently gradual to block prohibitively slow convergence of
pulse duration are often clear and prominent. All this means the iterative procedure. The described weighting scheme does
that, for completely reliable inversion, one should preferably not affect the ‘regular’ sub-population of data, and is capable
estimate either the station term, or merely the entire constant of suppressing a large proportion of asymmetric outliers. The
term directly from data. For ‘good’ stations, the station term neglect of this point was the main cause of the bias that
must be relatively small and the total additional delay is distorted the estimates of Gusev & Abubakirov (1996a).
close to the value estimated from the source and instrument
effects combined. With some risk, one can use this estimate to

constrain the inversion. THE INVERSION ALGORITHM

Based on the above approach, we designed a data processing
On the effect of a non-spherical source radiation pattern

procedure aimed at the practical inversion of the vertical

profile of effective turbidity ge under a seismic station. WeThe theories of Williamson (1972) and Bocharov (1988), as
assume that the data are the tm measurements for a numberwell as the numerical results of Gusev & Abubakirov (1996b),
of small earthquakes, with their hypocentres below the station.are valid, strictly speaking, only for sources with spherical
The inversion procedure begins with choosing some parametricsymmetry (isotropic). More accurately, the radiation pattern

must vary only slightly over angles of the order of the model of effective turbidity structure. For a given vector of
cumulative angle of multiple scattering. This may be acceptable parameters, one can calculate theoretical estimates of data
in astrophysics, but clearly is not true for small earthquakes from Bocharov’s formula and compare them to observations.
at regional distances, where cumulative scattering angles are Inversion is then reduced to the choice of an optimal parameter
of the order of unity, and double-couple sources have radiation vector providing the best fit between theoretical and observed
lobes of comparable angular size. The most unpleasant case is values in terms of some criterion, in the simplest example that
when the station (component) is in a nodal direction: the direct of least squares. Bocharov’s formula is linear with respect to
arrival is then absent, and forward-scattered energy comes ge(s). This makes it possible to formulate the inverse problem
from neighbouring directions only. This energy will be the most as a linear least-squares problem, and we will discuss this case.
depressed for small delay times, and with increasing time, more Let us write down the equations that present the basis for
and more energy will leak to this ray direction. (Finally, late coda inversion. Let tm,j ( j=1, 2, …N) denote the jth observed tmwill arrive, without any observable amplitude depression: this value, and let the theoretical expression that relates tm to the
is the reason for its high efficiency for magnitude evaluation.) vector of (unknown) parameters p={p

i
} of a particular para-

This mechanism will make the observed peak position strongly metric model be written as T
j
( p). Then we can write down the

delayed compared with the case of an isotropic source. equation that relates tm,j to unknown p as
A qualitatively similar but less pronounced picture is

observed for rays that are nearly nodal. Thus peak delay data T
j
(p)+k

j
=tm,j , (17)

from small earthquakes, as compared with the ideal case of an
where k

j
is the true misfit that combines random error andisotropic source, will look as if they are contaminated by a

model inadequacy. However, if one departs from equations ofconsiderable proportion of large positive errors (‘outliers’). For
P waves, as compared to S waves, the holes in the radiation this kind and uses no a priori weighting, one implicitly ascribes

pattern are more prominent and the apparent contamination the same accuracy to tm measurements made at different
can be expected to be more pronounced. distances, and this assumption is incorrect. The mean value of

To process data of this kind one can employ a robust tm is expected to increase as the distance squared in a uniform
estimation method. The method selected is a modification of medium. In such a case, the assumption of constant relative
the ‘uniform reduction’ technique of Jeffreys (1961); see also error is much more reasonable, and the more so when one
Mosteller & Tukey (1976). In this technique, a weight is notes that the range of tm values is sufficiently wide, up to two
ascribed to each least squares equation that depends on its orders in magnitude. The increase of tm data scatter with
residual, and the weighting procedure is applied in an iterative distance can readily be seen on the records. The average
manner until weights stabilize. The particular weighting observed tm increases approximately in proportion to distance
function we use is in real cases. To implement the idea of the constant relative

error in this situation, we will assume that the absolute errorW (d)=1/[(1+q( |d|/s)b] , (16)
of tm is proportional to traveltime, and therefore will divide

where d is the residual, s is the rms residual determined at the both sides of (17) by the value of traveltime td,j . Thus we intro-
previous iteration, and q and b are adjustable parameters. The duce the new variable y

j
=tm,j/td, j , define Z

j
(p)=T

j
(p)/td,j ,parameter q was set to 2.3; that is, to the upper 1 per cent and arrive at a modified equation:

quantile of the normal law, and hence when the residual is as
large as 2.3s, its weight is reduced to 0.5. By manipulating b Z

i
(p)+e

j
=ym,j , (18)

we define how gradual or how abrupt is the switching of the
where now the variance of the error term e

j
can be assumedvalue of the weight from about unity at small residuals to about

zero at large ones. Setting b=4 we achieve a compromise: constant, independent of j.
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Let us now consider the simplest parametric model—that of this approach is that the shape of the estimated profile

does not critically depend on the assumed set of layer depths.of a piecewise-constant vertical effective turbidity profile,
or PCP. Let i be the number of a layer, counting from This approach is left for the future. As a result of inversion,

we obtain the estimates of parameters, of their errors (morethe surface down, h
i

the depth of the top of a layer, gei the

effective turbidity in a layer, M the total number of layers precisely, of the covariance matrix), and also of the residual
plus 1, so that i=M corresponds to the lower half-space, and error and average weight, which are useful for comparing
m the value of i for the layer that contains the source. For different models.
i=1,… , M, p

i
=gei ; for i=0, p0=ge0=tm,0 . The source-to-station rays are assumed to be uprising,

To find the particular form of Z
j
(p) let us evaluate the and hence in practical inversion a threshold value is set for

integral (12) for our case. We temporarily omit the j subscript. the angle of incidence at a source to select such data. The
Let s be the coordinate along the unperturbed ray of the total first step of the procedure is therefore to calculate seismic
length S, and let ge(s) be equal to constants ge1 , ge2 , … geK rays through a known velocity structure, and to check this
within corresponding ray pieces (0, s1 ), (s1 , s2 ), … , (s

m−1 , S). selection criterion.
These pieces are not assumed to be straight lines, and may be We have described the simplest case, when the problem is
segmented; their lengths are assumed to be known from ray linear and the standard linear weighted least-squares pro-
calculations. (We do not assume any specific correspondence cedure, made robust by means of iterative residual-dependent
between the constant-turbidity layers discussed here and weighting, is sufficient. The generalization to non-linear cases
constant-velocity layers that specify rays.) For this case, (12) introduces no fundamental changes, although it may add
yields technical complications. In the simplest case one might apply

a grid search over ‘non-linear’ unknowns, and combine it with(c/S2 )
T �=ge0+ge1U(0, f1 ) least squares over the rest of the variables.
+ge2U(f1 , f2 )+…+gemU(f

m−1 , 1) , (19)

where f
i
=s

i
/S, and

TESTING THE INVERSION PROCEDURE
U(p, q)= ( p2/2−p3/3)− (q2/2−q3/3) . (20)

ON A SYNTHETIC EXAMPLE
For a given ray, s

i
, S and f

i
are known. To account for variable

The inversion procedure described above was tested using avelocity, we simply set c=S/td in (19) as explained above.
series of synthetic data sets. These were generated to emulateNow taking into account the assumed relationship
expected properties of data. One particular property is the
tm�/
T �=6/10.9=0.55=B, for Z

j
(p)=T

j
(p)/td,j , we can

large scatter of the ‘regular’ tm data, related to the fact thatwrite down
the position of the maximum peak in a body-wave group
varies greatly among various components and among recordsZ

j
= ∑

M

i=0
a
ij
gej , (21)

of events with comparable hypocentre locations. Another

critical property is the presence of a substantial fraction of thewhere the coefficients a
ij

are
‘outlier’ subpopulation in the observed tm data, produced by

a0j=1/td ,
nodal or near-nodal arrivals, as explained above. This sub-
population must be present even when one works witha

ij
=BSU(f

i−1 , f
i
) for i≤m , (22)

vector data; it will be more evident when using each of the
and

three components separately, as we are planing to do. The
a
ij
=0 for m+1< i<M . assumed observational setup is similar to that of the practical

inversion of our companion paper: source depth intervalAt given h
i
, and N>M, N equations (21) represent an over-

25–250 km, hypocentre density decays with depth, datadetermined linear system, to be solved by least squares. Actual
volume 250. The velocity structure is a constant-velocity crusttm data are very noisy, so a practical inversion needs N&M.
(HMoho=35 km, c

S
=3.5 km s−1 ) over a constant-velocityNow denote the a

ij
matrix as A, the Z

j
vector as Z, and the

mantle (c
S
=4.7 km s−1 ), and the S-wave effective turbiditymatrix of residual-dependent weights as W, then for the least

structure is a four-layer one: h=0–10 km, ge=0.01 km−1 ;squares estimate p∞ we obtain the standard result
h=10–35 km, ge=0.005 km−1 ; h=35–100 km, ge=0.002 km−1 ,

p∞= (A∞WA)−1A∞WZ . (23) h=100–250 km, ge=0.0005 km−1 . The velocity structure fixed
in the inversion was the true one; the effective turbidityIn a practical implementation, this result is recalculated in
structure to invert consisted of three unknowns, ge1 , ge2 and ge3 ,an iterative manner several times, with the diagonal W matrix
for the layers h=0–20 km, h=20–80 km and h=80–250 km.being adjusted on each iteration employing rule (16) until
The statistical structure of data was assumed as follows: 60 perconvergence is reached. The starting state for W is the unity
cent is the ‘regular subpopulation’, assumed to be distributedmatrix.
according to the exponential law with the mean equal to theWithin the framework of the assumed PCP model and
forward-calculated 
tm�; and 40 per cent is the ‘outlier’ sub-simple least squares, one tries to estimate the values of gei as
population, distributed according to the saw-tooth/triangularindependent parameters. How detailed such a reconstruction
distribution density, with its maximum at tm=0 and linearmay be is limited by the effective rank k of A. In this approach,
decay up to the tm value equal to traveltime. The exponentialthe choice of a particular set of layer boundaries may have an
law of the ‘regular’ subpopulation imitates very noisy data: forunwanted effect on the result. In a more general inversion
this law, the coefficient of variation (standard deviation/mean)procedure, such as for example SVD, the number of constant-
is equal to unity. The fraction of the ‘outlier’ subpopulation isturbidity layers can be made large, causing the values of gei to

become significantly correlated between layers. One advantage assumed to be rather large. Its density decays in a manner
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reflecting the expected behaviour of near-nodal data: very large s values are coefficients of variation and standard deviations
provided by the least-squares procedure or calculated fromdelays, corresponding to truly nodal data, are relatively rare.
its results.The results of inversion are given in Table 1. It includes:

Fig. 2 illustrates the inversion of the data set 1A. (a) showstrue average values of effective turbidity for the assumed three
the spatial data distribution. A first glance at plots (b) and (d)layers, calculated from the ‘true’ four-layer profile; inversion
with raw tm,j data gives an impression of wild scatter, suggestingestimates obtained without any noise (these should be seen as
zero information content as regards to distance variation ofthe target values for efficient inversion; their deviations from
tm . However, the robust estimation procedure applied managestrue values reflect the error caused by the difference between
(in this particular test, and in most others) to effectively screen‘real’ and ‘assumed’ layering); three inversions for data sets
out the outliers. Plot (c) shows the graph of the weightingwith 100 per cent ‘regular’ error, and no weighting applied;
function (16), whose width has been self-adjusted during 40and 10 inversions representing the main simulation. For each
successive iterations, to arrive at the final value that correspondsdata set, two inversions are presented: one (A) with respect to
to the standard deviation of 0.035, not far from the truege1–3 (three unknowns, tm0 fixed as zero) and another (B) with
value of about 0.0315. In the process, about one-third ofrespect to ge1–3 and tm0 (four unknowns). The four bottom
data (marked ×) acquired weights below 0.3 and were thuslines represent averages and standard deviations over nine
practically excluded from the inversion.acceptable inversions (the 3A/3B variant is rejected), for the A

The analysis of numerical estimates given in the Table 1 mayand B cases. The columns contain: variant code; y, rms residual
be summed up as follows:error in fitting y

j
multiplied by 100; wav , average data weight/

fraction of unsuppressed data; estimates of ge1–3 (in 1/1000 km (1) The assumption of an arbitrary set of layer boundaries
units) and of tm0 (s); L 200, the total optical thickness L e of the may cause errors of up to 20 per cent for the layer ge estimates,
upper 200 km of the Earth, measured along an oblique ray even without any noise. However, the estimate of L e is not

distorted by this factor.with an angle of incidence of 45° at a depth of 200 km. CV and

Table 1. The results of inversion for simulated data sets.

No. 100y wav g1 g2 g3 tm0 L 200 CV(g1,2,3) s(tm0 ) CV(L 200)

T rue values

– – – 7.5 3.25 0.676 0.0 0.523

Inversion: no noise

00 0.11 1 7.98 2.667 0.670 0.0 0.521

Inversions: ‘regular’ noise, no outliers

01A 3.10 1 9.0 2.36 0.82 0.0 0.54 0.21 0.19 0.35 0.0 0.051

01B 3.10 1 8.0 2.34 0.27 0.03 0.52 0.48 0.19 0.35 0.113 0.095

02A 3.28 1 6.2 3.58 0.51 0.0 0.52 0.42 0.14 0.60 0.0 0.061

02B 3.28 1 2.4 3.60 0.50 0.11 0.43 2.71 0.14 0.61 0.181 0.159

03A 3.17 1 7.7 2.83 0.77 0.0 0.54 0.24 0.16 0.40 0.0 0.051

03B 3.17 1 0.2 2.83 0.78 −0.07 0.60 0.42 0.16 0.40 0.115 0.106

Inversions: both ‘regular’ noise and outliers

1A 3.49 0.64 13.2 2.65 0.83 0.0 0.42 0.17 0.19 0.35 0.0 0.055

1B 3.48 0.64 18.0 2.69 0.82 −0.16 0.78 0.24 0.19 0.35 0.132 0.106

2A 5.03 0.67 18.2 2.79 0.99 0.0 0.83 0.17 0.26 0.50 0.0 0.087

2B 4.93 0.67 6.3 2.82 0.92 0.36 0.53 1.09 0.26 0.53 0.187 0.173

3A 9.98 0.78 23.2 6.57 0.14 0.0 1.06 0.24 0.22 6.17 0.0 0.148

3B 9.93 0.78 11.4 6.42 0.12 0.38 0.77 0.98 0.22 7.41 0.346 0.284

4A 2.95 0.65 8.9 2.37 0.56 0.0 0.50 0.24 0.19 0.47 0.0 0.051

4B 2.97 0.65 −1.2 2.50 0.53 0.29 0.26 5.00 0.18 0.50 0.169 0.146

5A 4.41 0.68 10.5 3.84 0.26 0.0 0.61 0.23 0.18 1.63 0.0 0.067

5B 4.51 0.68 5.1 3.77 0.31 0.19 0.48 0.92 0.19 1.40 0.146 0.121

6A 4.52 0.69 10.5 2.71 2.34 0.0 0.87 0.24 0.27 0.20 0.0 0.074

6B 4.60 0.69 9.2 2.73 2.37 0.04 0.84 0.73 0.27 0.20 0.182 0.165

7A 2.15 0.65 6.1 2.10 0.66 0.0 0.43 0.21 0.14 0.32 0.0 0.036

7B 2.14 0.65 1.1 2.07 0.66 0.15 0.30 2.89 0.14 0.31 0.094 0.081

8A 2.89 0.65 8.2 2.84 0.50 0.0 0.51 0.18 0.16 0.56 0.0 0.041

8B 2.93 0.65 6.5 2.82 0.50 0.06 0.47 0.44 0.17 0.57 0.089 0.076

9A 2.75 0.67 6.7 3.13 0.06 0.0 0.42 0.26 0.13 3.61 0.0 0.043

9B 2.74 0.67 0.8 3.04 0.94 0.19 0.28 3.65 0.14 2.67 0.084 0.076

10A 3.30 0.62 7.7 2.06 0.81 0.0 0.49 0.25 0.23 0.40 0.0 0.055

10B 4.36 0.65 0.5 1.86 0.00 0.35 0.37 9.87 0.35 0.35 0.162 0.134

av/A 3.49 0.65 10.0 2.72 0.78 0.0 0.56 0.21 0.19 0.89 0.0 0.056

sd/A 0.95 0.02 3.7 0.54 0.65 0.0 0.17 0.03 0.04 1.10 0.0 0.016

av/B 3.62 0.66 5.1 2.70 0.78 0.16 0.47 2.75 0.21 0.76 0.138 0.119

sd/B 0.99 0.02 5.9 0.55 0.66 0.16 0.21 3.13 0.06 0.79 0.040 0.037
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(a) (b)

(c) (d)

Figure 2. Inversion of the simulated data set 1A (see Table 1). (a) Input data distribution over depth and epicentral distance. (b) tm versus

hypocentral distance: #, data points, ×, rejection of a data point, i.e. its weight is set to 0.3 or below; +, fitted theoretical tm values; the smooth

line shows a quadratic trend, characteristic of a constant-turbidity medium. (c) Residuals of y versus hypocentral distance: # and × as in (b). On

the left, along the vertical axis, the graph of the weighting function (16), whose parameter s was self-adjusted, is shown. (d) Similar to (b), but on

a log–log scale.

(2) In the case of purely ‘regular’ error, layer ge estimates (6) Estimated values for coefficients of variation of ge1 ge2
and ge3, equal on average to 21, 19 and 89 per cent respectively,seem reasonable for the ‘constrained-tm0’ inversion. ‘Free-tm0’

inversion may produce major errors in the ge1 value for the should be compared to actual systematic errors for ge1, ge2
and ge3 (of +20, +2 and +16 per cent respectively) and toupper layer. Note that there are no sources inside this layer.

(3) The proposed robust inversion procedure that uses the actual values of the coefficient of variation of the estimates
(calculated over the nine variants) equal to, respectively, 37,residual-dependent weighting (16), and adjusts these weights

iteratively (see eq. 34 and comments thereon), performs quite 20 and 83 per cent. To be on the safe side when analysing the
results of real inversions, we should consider the estimateswell. Most outliers are rejected and the residual error is

reduced, approximately, to a level (0.035) comparable to that based on calculated coefficients of variation as somewhat too

optimistic, and those based on comparing different data setsfor the reference case of purely ‘regular’ error (0.032). In one
case in 10 (variant 3A/3B), the procedure fails. This case is as more realistic. This applies to the estimates of L e as well:

whereas the estimates practically lack any systematic error,identified by its very high residual error of about 0.10, and it

is likely that such an identification will be possible in a real their accuracy of 5 per cent calculated from the least-squares
results is as much as 3.5 times below the real scatter ofinversion. Thus we used only the remaining nine inversions to

judge the accuracy of inversion, represented by the averages 17 per cent.

(7) On the whole, despite very strong noise, including bothbelow. The average fraction of rejected data is about 65 per
cent, in reasonable agreement with the modelled data structure. ‘regular’ dispersion and ‘outlier’ errors, reasonable estimates

for the effective turbidity structure were obtained, with a(4) The systematic error of ge1 is larger in the case of
the ‘free-tm0’ inversion (−36 per cent) than in the case of general accuracy of about 40 per cent for an individual data

set, and of the order of 20 per cent for averaged results of‘constrained-tm0’ inversion (+25 per cent). The estimate of tm0
is biased (formal estimate +0.16±0.05 s against the true value inversion, based on 4–5 independent data sets.
of zero). One can conclude from these facts that it would be
very important to avoid estimating of tm0 in a real inversion.

DISCUSSION
In the following we do not discuss further the results of the
‘free-tm0’ inversion. The new approach developed here on the basis of Bocharov

(1987, 1990) is essentially a kind of tomography with respect(5) Large errors in ge1 are associated with variant nos 1, 2,

4 and 5; all these have relatively high residual error. This fact to the spatial effective turbidity distribution, and many aspects
of other tomographic problems and techniques are relevantsuggests that the results obtained in inversions with relatively

large residual errors are less reliable. here. Its specific value can be perceived more clearly when one
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realizes that for traditional velocity tomography with unknown
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APPENDIX A: SHORT PROOF OF
BOCHAROV’S FORMULA

We present a short new proof for Bocharov’s formula. To find

the mean delay 
T� (4) of forward-scattered energy propagated

through a scattering medium with Gaussian ACF, first consider

an ensemble of random stochastic ray paths (Fig. A1a) that

connect a source O set at (0, 0, 0) and a receiver R set at

(0, 0, z). Following Williamson (1972), one can move to an

(a)

(b)

(c)

equivalent problem, considering instead the ray paths that Figure A1. A sketch to illustrate the derivation of Bocharov’s formula.
depart from O along the Z-axis and terminate on a sphere of (a) Two ray paths A, B from a source O to receiver R, and their

approximate rotated equivalents A∞, B∞. (b) Unperturbed (OR0), rotatedradius OR. The related error is small for sufficiently smooth
unperturbed (OR1) and rotated perturbed (OR) rays. (c) Representationeffective turbidity structures; the meaning of ‘smoothness’ will
of a perturbed ray as a chain of constant-length segments.be explained in more detail later.

The projection of a stochastic ray path onto the ZOX plane

from the figure thatis sketched in Fig. A1(b). Shown are the unperturbed ray OR0 ,
the rotated unperturbed ray OR1 and a perturbed ray OR, all

of the same length S. The straight-line distance from O to R is

equal to r. Let the X-coordinates of R and R1 be x and x1 , and
Dx

i
=Ds

i
sinA ∑

i

k=2
h
kB#Ds

i
∑
i

k=2
h
k
,

Dp
i
=Ds

i
−Ds

iAcosA ∑
i

k=2
h
kBB# 1

2
Ds

iA ∑
i

k=2
h
kB2 .

(A2)
denote QR0 as p. Note that the angle y is assumed small, so

that y#x1/S#x/S. The individual delay is RR1/c# (S−r)/c.

Clearly,
Summing these contributions with respect to i, we obtain

S−r=S−
S−p

cos y
#p−

1

2
Sy2#p−

x2

2S
. (A1) x= ∑

N

i=2
(N+1− i)h

i
Ds

i
,

p=
1

2
∑
N

i=2
Ds

iA ∑
i

k=2
h
kB .

(A3)

Now assume the ray path to consist of a large number N of

linear segments Ds
i
(i=1, 2… N) of equal length Ds, so that

the along-ray distance from O to the end of the Ds
i
segment is Reformulating (1) in terms of particles, we obtain the

s
i
=iDs and S=NDs. Fig. A1(c) shows the first four segments. probability of a scattering event to take place on a ray element

Denote by h
i

the angle of scattering, or angular deflection du as dP(du)=gn(u)du. Now, introducing the error of the order
between segments Ds

i−1 and Ds
i
. Denote by Dx

i
and Dp

i
the (Ds)2, assume a scattering event, if it takes place somewhere

on Ds
i
, to be shifted to the endpoint of this segment (as showncontributions of the segment Ds

i
into x and p. It is evident
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in Fig. A1c); for the probability of this event we obtain 
S−r�=
p�−
x2�/2S:

Psc=P(Ds
i
)#gn(si)Ds . (A4)

For each scattering event, define the ‘angle vector’
h
i
= (h(x)

i
, h(y)
i

), where |h
i
|%1, that connects the two points of a

unit sphere that are the ends of unit vectors of the incident
and of the scattered ray segments, and let the distribution of


p�=
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)Ds

i
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(A10)
h
i
be (see eq. 9)

P(h
i
)=P(h(x)

i
, h(y)
i

)=m(h
i
, s
i
) . (A5)

When no scattering occurs, we can formally assume h
i
to be

distributed as a delta function. For an arbitrary segment Ds
i
,

the act of scattering either occurs on it once, with probability
Now as N tends to infinity we may neglect all terms of second

Psc (A4) or does not occur, with probability 1−Psc . Multiple
order in Ds

i
to obtain the integral

scattering over Ds
i
may safely be neglected. In the former case,

the distribution of the vector h
i

(={h(x)
i

, h(y)
i

}) is defined by

S−r�=

1

2S P S
0

ge (u)u(S−u) du . (A11)eq. (A5); otherwise, it equals zero. Formally, one may write

the following mixed distribution law for h
i
as

With the error of second order in y one can replace thep(h
i
)= (gn(si)Ds

i
)m(h

i
, s
i
)+ (1−gn (si)Ds

i
)d(h

i
) . (A6)

perturbed ray-length variable u [defined on (0, S)] by the
Now we recall that 
|h

i
|2�=h2

0
and from (A6) we calculate the length along the straight line OR [defined on (0, r), and again

mean square length of the vector h
i
: denoted u]:


|h
i
|2�=gn (si)h20 (si)Ds

i
. (A7)

1

2S P S
0

ge(u)u(S−u) du#
1

2r P r
0

ge (u)u(r−u) du . (A12)
The right-hand side of (A7) can be expressed through (10) as

gn(si)h20 (si)Ds
i
=2ge(si )Ds

i
. (A8)

A similar result is true for the ZOY plane. As was shown by
(At this point, the initial problem with piecewise-linear ray Williamson (1972), the contributions to 
S−r� (that is, to
paths has essentially been reduced to the simpler problem c
T� ), calculated for each of the two projections of a 3-D ray
of smooth ray paths; that is, to Chernov’s ‘ray diffusion’.) To path onto the ZOX and ZOY planes can merely be added.
evaluate (A3) we now note that for an axisymmetric indicatrix Denoting 
S−r� as F, we obtain for the total delay
m (h

i
, s
i
),

c
T�=F=
1

S P S
0

ge (u)(S−u) udu , (A13)
h(x)
i
�=
h(y)

i
�=0 ;


(h(x)
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)2�=
(h(y)
i

)2�=
1

2

|h

i
|2�=ge(si )Ds

i
,

(A9)
which is just Bocharov’s result. In his original derivation,

Bocharov (1985, 1987, 1988) used a more general approach, first
writing down the theoretical multiple-integral representationand we may assume that 
h(x,y)

i
h(x,y)
i

�. Substituting
this into (A3) we obtain 
x�=0, 
p�, 
x2� and finally for the distribution of T , and then calculating 
T� from it.
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